

"Can Testing" for H2S in Vapor Phase Reduction

Description	Sensidyne H2S	Ave Value	Ave Reduction	Net Reduction
-			0	_
Blank	200; 250; 150	200	<u> </u>	0
Blank Background	150; 150; 100	133	67	0
Blank Background	150; 75; 100	92	41	0
Blank Background	25; 50; 25	34	58	0
Blank	200; 250; 200	216	0	0
Product A	200; 100; 100	133	83	16
Product A	75; 50; 100	75	58	17
Product A	25; 0 ; 0	8	67	9
Blank	150; 150; 200	167	0	0
T-Chlor @ 250ppm	25; 25; 0	17	100	33
				Total
T-Chlor @ 250ppm	0; 0 ; 0	0	17	Removal
Blank	200; 150; 200	184	0	0
Product B	100; 125; 100	108	76	9
Product B	100; 100; 100	100	8	(33)
Product B	25; 50; 0	25	75	17
Blank	250; 200; 150	200	0	0
SuperAll #88 @ 2000				
ppm	25; 0 ; 0	8	125	High Removal

Notes For and from the Above Data:

- 1.) For the "Can Test" the following procedure was used:
 - 1) Measure 200ml into 1000ml Plastic Bottle
 - 2) Swirl Bottle and ran Sensidyne H2S using 25-2000ppm Tubes.
 - 3) Repeat with Dosing Chemicals, used swirling only to mix as the blanks.
- 2.) Product A seems to remove H2S at about 35% of chemical added. For a tank with 150 ppm H2S in top, we would expect 428 ppm Product A would capture the H2S. This is assuming the pH and other properties of the brine water are similar.
- 3.) T-Chlor / Bleach is very effective at removing vapor phase H2S with-out oxidizing the water to a positive ORP.
- 4.) Product B a 50% Glutaraldehyde based biocide was sluggish in H2S removal Figure Glutaraldehyde to remove at about 20% rate per active percent. For a tank with 150ppm H2S in top, we would expect about 1500ppm would capture the H2S. This is assuming the properties of the brine waters are similar.
- 5.) SuperAll #88 was the most effective in testing.
 - Lower dosage <2000ppm to be tested.